2023/TDC(CBCS)/ODD/SEM/ PHISEC-501T/065

TDC (CBCS) Odd Semester Exam., 2023

PHILOSOPHY

(5th Semester)

Course No. : PHISEC-501T

(Logical Reasoning—II)

Full Marks : 50 Pass Marks : 20

Time : 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer *fifteen* questions, selecting any *three* from each Unit : 1×15=15

Unit—I

- 1. What is inductive reasoning?
- 2. Define Anumāna.
- 3. How many kinds of Anumāna are there, according to Gotama?
- 4. What is Pakṣatā?

24J/81

(2)

Unit—II

- 5. "A valid Hetu has five characteristics." Is the statement true?
- 6. Define Hetu.
- 7. "Fire is cold, because it is a substance." Mention the Hetvābhāsa involved in this inference.
- 8. How many types of Savyabhicāra Hetvābhāsa are there?

Unit—III

- 9. What are variables?
- 10. What is the symbol of implicative function?
- 11. How do modern logicians define a proposition?
- 12. If p is true and q is false, what will be the truth-value of $p \lor q$?

24J/81

(Continued)

Unit-IV

- 13. How many elementary rules of inference are there?
- 14. State the rule of disjunctive syllogism.
- 15. State the rule of transposition.
- 16. Are the rules of replacement just logical equivalences?

Unit-V

- 17. When does an argument become invalid?
- 18. When does an implicative function become false?
- 19. Who is regarded as the father of set theory?
- 20. What is an empty set?

SECTION-B

Answer five questions, selecting one from each Unit : $2 \times 5 = 10$

Unit—I

- State two points of differences between deduction and induction.
- 22. What is Parāmarśa?

24J/81

Unit-II

- 23. What is Hetvābhāsa?
- 24. Explain with an example of the Savyabhicāra Hetvābhāsa.

Unit—III

- 25. Symbolize the following statements :
 - (a) If he comes, then I shall go (C, G).
 - (b) Either he is telling the truth or he is lying (T, L).
- 26. What is truth-table?

Unit—IV

- 27. State two differences between the rules of inference and the rules of replacement.
- 28. State the rules of constructive dilemma and destructive dilemma.

Unit—V

- **29.** Mention two utilities of shorter truth-table technique.
- **30.** Distinguish between finite and infinite sets with examples.

24J/81

(Continued)

SECTION-C

Answer five questions, selecting one from each Unit : $5 \times 5 = 25$

Unit—I

- 31. Briefly discuss the different classifications of Anumāna.
- 32. What is Vyāpti? Briefly discuss how Vyāpti is established.

Unit—II

- 33. Explain with examples Viruddha, Satpratipaksa and Bādhita Hetvābhāsa.
- 34. Explain with examples Savyabhicāra and Asiddha Hetvābhāsa mentioning their sub-types.

Unit—III

- 35. Use truth-table to characterize the following statement-forms as tautologous, contradictory or contingent : $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) $[(p \supset q) \cdot (q \supset r)] \supset (p \supset r)$
 - (ii) $p \supset [q \lor (p \equiv r)]$

24J/81

36. Use truth-table method to determine the validity or invalidity of the following argument-forms :

 $2\frac{1}{2}+2\frac{1}{2}=5$

(i) $p \supset (q \cdot r)$ $(q \lor r) \supset \sim p$ $\therefore \sim p$

Unit—IV

37. Construct formal proof of validity for the following : $2\frac{1}{2}+2\frac{1}{2}=5$

$$(ii) (D \cdot E) ⊃ ~F$$

F∨(G · H)
D ≡ E
∴ D ⊃ G

24J/81

(Continued)

- (7)
- **38.** Construct indirect proof to prove the validity of the following : $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) $(H \supset I) \cdot (J \supset K)$ $(I \lor K) \supset L$ $\sim L$ $\therefore \sim (H \lor J)$

(ii)
$$A \supset (B \cdot C)$$

 $(B \lor D) \supset E$
 $D \lor A$
 $\therefore E$

Unit-V

- **39.** Prove the invalidity of the following using shorter truth-table method : $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) $A \cdot \sim B$ $B \equiv C$ $C \supset D$ $\therefore \sim D$

(ii) $R \supset (Q \lor P)$ $(Q \cdot P) \supset O$ $\therefore R \supset O$

24J/81

(8)

40. If A = {1, 2, 3, 4, 5}, B = {3, 5, 6, 7} and C = {2, 4, 3, 8}, then find the following : $2\frac{1}{2}+2\frac{1}{2}=5$

(i) $(A \cap B) \cup (A \cap C)$

(ii) $(A \cup B) \cap (A \cup C)$

$\star \star \star$

2023/TDC(CBCS)/ODD/SEM/ PHISEC-501T/065

24J-1370/81